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Multi-scale nature of turbulence
Incompressible, three-dimensional, 

Navier-Stokes turbulence
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Multi-scale nature of turbulence

Large scales:

● Forcing influence

● Statistically non universal
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Incompressible, three-dimensional, 
Navier-Stokes turbulence
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Small scales:

● Forcing fades out                  
~1/Rep

● Statistically universal

● Sustained by direct cascades
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Velocity gradients, strain and 
rotation rates

Velocity gradients describe the small scales

[E. Novikov, FDR, 1993]
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 Velocity gradients at low Reynolds numbers
Acknowledgments: Prof. Michael Wilczek

 Strain rate at high Reynolds numbers

 Velocity gradients at high Reynolds numbers

 Some applications



  

7Velocity gradients and small-scale turbulence

Re=0: Gaussian F         Gaussian u Re>>1: Fully developed turbulence

● Geometry: strain and rotation rates

● Invariants: dissipation rate, enstrophy, etc.
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Re=0: Gaussian F         Gaussian u Re>>1: Fully developed turbulence

● Geometry: strain and rotation rates

● Invariants: dissipation rate, enstrophy, etc.

Velocity gradients and small-scale turbulence
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2D slice of the 3D dissipation-rate field at increasing Reynolds

Re=0: Gaussian F         Gaussian u Re>>1: Fully developed turbulence

● Geometry: strain and rotation rates

● Invariants: dissipation rate, enstrophy, etc.

Velocity gradients and small-scale turbulence
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2D slice of the 3D dissipation-rate field at increasing Reynolds

Re=0: Gaussian F         Gaussian u Re>>1: Fully developed turbulence

● Geometry: strain and rotation rates

● Invariants: dissipation rate, enstrophy, etc.

Velocity gradients and small-scale turbulence
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2D slice of the 3D dissipation-rate field at increasing Reynolds

Re=0: Gaussian F         Gaussian u Re>>1: Fully developed turbulence

● Geometry: strain and rotation rates

● Invariants: dissipation rate, enstrophy, etc.

Velocity gradients and small-scale turbulence
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● Skewness, cascades

Features of fully developed turbulence
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● Skewness, cascades

Features of fully developed turbulence

● Intermittency, 
anomalous scaling
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● Skewness, cascades

Features of fully developed turbulence

● Alignments strain 
rate-vorticity

● Intermittency, 
anomalous scaling
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➢Do low-Reynolds flows exhibit any of the features of high-
Reynolds turbulence?

➢How do the skewness, intermittency, alignments, etc. 
establish as Reynolds increases?

?                ??          ???                           ????????        

    

The onset of fully developed turbulence

[1] Yakhot and Donzis, Phys. Rev. Lett., (2017)
[2] Gotoh and Yang, Philos. Trans. Royal Soc. A, (2022)

[1,2] 
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➢Do low-Reynolds flows exhibit any of the features of high-
Reynolds turbulence?

➢How do the skewness, intermittency, alignments, etc. 
establish as Reynolds increases?

?                ??          ???                           ????????        

    

➢Wyld expansion of the Navier-Stokes equations

➢Velocity gradient modelling 

The onset of fully developed turbulence

[1] Yakhot and Donzis, Phys. Rev. Lett., (2017)
[2] Gotoh and Yang, Philos. Trans. Royal Soc. A, (2022)
[3] Wyld, Ann.Phys, (1961)
[4] Meneveau, Annu. Rev. Fluid Mech, (2011)
[5] Leppin and M. Wilczek, Phys. Rev. Lett., (2020)

[3] 

[4,5] 

[1,2] 
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Randomly-driven Navier-Stokes:
from Gaussian field to turbulence

Gaussian forcing:
large scales, white in time

Nonlinear convective term

Reynolds number

Re=0: Gaussian F         Gaussian u

Velocity field

Re>>1: Fully developed turbulence
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Randomly-driven Navier-Stokes:
from Gaussian field to turbulence

Gaussian forcing:
large scales, white in time

Nonlinear convective term

Reynolds number

Re=0: Gaussian F         Gaussian u

Velocity field

Re>>1: Fully developed turbulence
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Randomly-driven Navier-Stokes:
from Gaussian field to turbulence

Gaussian forcing:
large scales, white in time

Nonlinear convective term

Reynolds number

Re=0: Gaussian F         Gaussian u

Velocity field

Re>>1: Fully developed turbulence



  

20
Randomly-driven Navier-Stokes:
from Gaussian field to turbulence

Gaussian forcing:
large scales, white in time

Nonlinear convective term

Reynolds number

Re=0: Gaussian F         Gaussian u

Velocity field

Re>>1: Fully developed turbulence



  

21From the velocity field to the Lagrangian 
modelling of the velocity gradient

● Langevin for ensemble that shares the same A

● Fewer degrees of freedom: unclosed terms, modelling!

unclosed unclosed

Self interaction, pressure Hessian, viscous Laplacian, Gaussian forcing



  

22From the velocity field to the Lagrangian 
modelling of the velocity gradient

● Langevin for ensemble that shares the same A

● Fewer degrees of freedom: unclosed terms, modelling!

● Re=0: Gaussian, known Hessian and viscous terms
● Pressure Hessian: exact 

at first order

● Viscous corrections:     to 
be modeled

unclosed unclosed

Self interaction, pressure Hessian, viscous Laplacian, Gaussian forcing



  

23Modelling through tensor function representation

Modeling

● Basis tensors: second order in A  

● Constant coefficients γ
n

Wyld zeroth-order expansion



  

24Modelling through tensor function representation

Modeling

● Basis tensors: second order in A  

● Constant coefficients γ
n

Constraints

Unity time scale

Homogeneity

Wyld, weak coupling

Wyld zeroth-order expansion



  

25Solvable Fokker-Planck Equation

Independent
invariants

Velocity gradient PDF
parametrized through
the invariants

Polynomial coefficients



  

26Solvable Fokker-Planck Equation

Independent
invariants

Velocity gradient PDF
parametrized through
the invariants

Asymptotic solution:
Polynomial x Gaussian

Polynomial coefficients



  

27Solvable Fokker-Planck Equation

Independent
invariants

Velocity gradient PDF
parametrized through
the invariants

Asymptotic solution:
Polynomial x Gaussian

Polynomial coefficients

Perturbation
parameter
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Onset of non-Gaussianity in the velocity gradient 
statistics

intermediate

most
extensional

most
compressional
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Onset of non-Gaussianity in the velocity gradient 
statistics

intermediate

most
extensional

most
compressional

ω

≈-0.5

3

15

● At Re
γ
≈1: skewness, negligible intermittency, 

vorticity aligns with extensional strain-rate 
eigenvector
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Onset of non-Gaussianity in the velocity gradient 
statistics

intermediate

most
extensional

most
compressional
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● At Re
γ
≈1: skewness, negligible intermittency, 

vorticity aligns with extensional strain-rate 
eigenvector

● At Re
γ
≈5: smooth transition to turbulence
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31Skewness in the strain-rate PDF

● Two strain-rate eigenvalues 
are similar..

● ..the other large and negative

● Very simple contours!

PDF weighted by
Wigner repulsion term J

S



  

32Teardrop PDF of the principal invariants

● PDF skewed along right 
Vieillefosse tail

● Intermittency establishes at 
larger Re
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The non-monotonic alignments of the vorticity 
with the strain rate 

● Vorticity aligns with extensional direction at small Reynolds

● Alignment with intermediate eigenvector establishes later on
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Velocity gradient realizations:
 DNS and model

● Time correlations 
through gauge 
terms 
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Velocity gradient realizations:
 time correlations

● Strain-rate correlations 
at small Re

● Turbulence hinders 
time correlations



  

36Random flows at low Reynolds: Conclusions

● Closed model for the velocity gradient 
(no fitting parameters)

● Analytically shown the onset of 
skewness, alignments, intermittency

● Similar velocity gradient 
realizations and time 
correlations in the        SDE 
model and DNS
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 Velocity gradients at low Reynolds numbers

 Strain rate at high Reynolds numbers
Acknowledgments: Prof. Michael Wilczek

 Velocity gradients at high Reynolds numbers

 Some applications



  

38

−4 −2 0 2 4
A11

10−7

10−5

10−3

10−1

101

P
D

F

Reλ = 120

Longitudinal component PDF

● Strain rate S

● Extreme events: heavy tails

D
is

si
pa

tio
n

 r
at

e

Strain rate at high Reynolds



  

39

−4 −2 0 2 4
A11

10−7

10−5

10−3

10−1

101

P
D

F

Reλ = 120

8 4 0 4 8
3( 1 + 2)

8

4

0

4

8

1
2

Strain-rate PDFLongitudinal component PDF

● Strain rate S

● Extreme events: heavy tails

● Energy cascade: skewness

...Complicated PDFs

...Time correlations
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Tailor-made high-Reynolds models

Centrifugal
stresses

Pressure
Hessian

Viscous
stress

Tensorial
noise

Strain-rate 
dynamics:

● Single-particle modelling:
unclosed equations

f(x(λ)):
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● Single-particle modelling:
unclosed equations

● Usual: class of models (SDEs), fit the 
equation parameters to match DNS

Centrifugal
stresses

Pressure
Hessian

Viscous
stress

Tensorial
noise

Strain-rate 
dynamics:

f(x(λ)):Tailor-made high-Reynolds models
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● Single-particle modelling:
unclosed equations

● Usual: class of models (SDEs), fit the 
equation parameters to match DNS

Centrifugal
stresses

Pressure
Hessian

Viscous
stress

Tensorial
noise

Strain-rate 
dynamics:

f(x(λ)):Tailor-made high-Reynolds models
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● Single-particle modelling:
unclosed equations

● Usual: class of models (SDEs), fit the 
equation parameters to match DNS

● Here: fit the solution from DNS, 
construct a model with that solution

Centrifugal
stresses

Pressure
Hessian

Viscous
stress

Tensorial
noise

Strain-rate 
dynamics:

f(x(λ)):Tailor-made high-Reynolds models
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● Single-particle modelling:
unclosed equations

● Usual: class of models (SDEs), fit the 
equation parameters to match DNS

● Here: fit the solution from DNS, 
construct a model with that solution

...data-driven, DNS database 100 101 102 103
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Centrifugal
stresses

Pressure
Hessian

Viscous
stress

Tensorial
noise

Strain-rate 
dynamics:

f(x(λ)):

DNS: 5123–40963, k
max

η>3

Tailor-made high-Reynolds models
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Strain-rate PDF:
contours

● Contours can be fitted ≈ exactly

● α
1
: skewness
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Strain-rate PDF:
contours

● Contours can be fitted ≈ exactly

● α
1
: skewness

● Approximations on the coefficients

● f: lognormal across contours



  

47Strain-rate PDF: whole PDF

Fitting goes like..



  

48Strain-rate PDF: whole PDF

● Capture PDF moments (core) and tails
● Minimal number of parameters

Fitting goes like..



  

49Strain-rate PDF: whole PDF

● Capture PDF moments (core) and tails
● Minimal number of parameters
● Extrapolate trends with Re

λ

Role of the Reynolds number

Fitting goes like..



  

50Marginals

The geometry of 3x3 
symmetric, traceless, 

isotropic matrix: Cartesian           Traces                  Eigenframe

dissipation rate strain self amplification
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Tailor-made Langevin and FP equation

Fokker-Planck equation +
tensor function representation

Unclosed    Known (fitting)

f(x(λ)):So far:
● Analytic PDF,
no need to run 

simulations!
● Time correlations?



  

52Tailor-made Langevin and FP equation

Fokker-Planck equation +
tensor function representation

Momentarily assume detailed balance: get coefficients

Unclosed    Known (fitting)

f(x(λ)):So far:
● Analytic PDF,
no need to run 

simulations!
● Time correlations? 8 4 0 4 8
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53Tailor-made Langevin and FP equation

Fokker-Planck equation +
tensor function representation

Momentarily assume detailed balance: get coefficients

Unclosed    Known (fitting)

To
ol

s Basis tensors from S

[1] Carbone and Wilczek, JFM 948, (2022)

[1]

[1]

f(x(λ)):So far:
● Analytic PDF,
no need to run 

simulations!
● Time correlations? 8 4 0 4 8
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54Strain-rate dynamics from Langevin eq
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= 5
= 7

Strain-rate dynamics from Langevin eq

Beyond detailed balance:
● Gauge terms for single-time stats

● Simple symmetries of the FPE

leaves FPE unchanged
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56Strain-rate dynamics from Langevin eq

Beyond detailed balance:

● Multiplicative noise (eigenframe rotation) 
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57Strain-rate dynamics from Langevin eq

Beyond detailed balance:

● Multiplicative noise (eigenframe rotation) 
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Carbone, Iovieno, Bragg, “Symmetry transformation and dimensionality
reduction of the anisotropic pressure Hessian”, JFM 900, (2020)
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Gaussian white noise
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Phenomenological modeling at 
high Reynolds: Conclusions

● Model designed for the strain-rate
..single-point stats not so complicated

● Why that contours shape?

● Extend the fitting to the full
gradient PDF (5D)
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 Velocity gradients at low Reynolds numbers

 Strain rate at high Reynolds numbers

 Velocity gradients at high Reynolds numbers
Acknowledgments: Vincent Peterhans, Prof. Alexander 
Ecker, Prof. Michael Wilczek

 Some applications
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● Single-particle, Lagrangian viewpoint

● Trajectories from Navier-Stokes: non-local

A data-driven model for the small scales?
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● Single-particle, Lagrangian viewpoint

● Trajectories from Navier-Stokes: non-local

Viscous
stress

Pressure
Hessian

External
forcing

Lagrangian
derivative

Velocity gradient
dynamics:

A data-driven model for the small scales?



  

62

● Single-particle, Lagrangian viewpoint

● Trajectories from Navier-Stokes: non-local

● Model: Langevin equation,

local up to noise

Viscous
stress

Pressure
Hessian

External
forcing

Lagrangian
derivative

Velocity gradient
dynamics:

Drift
Gaussian

white noise

A data-driven model for the small scales?
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● Single-particle, Lagrangian viewpoint

● Trajectories from Navier-Stokes: non-local

● Model: Langevin equation,

local up to noise

Viscous
stress

Pressure
Hessian

External
forcing

Lagrangian
derivative

Velocity gradient
dynamics:

Drift
Gaussian

white noise

A data-driven model for the small scales?

[Chevillard and Meneveau, PRL, 2006;

Johnson and Meneveau, PRF, 2017;

Leppin and Wilczek, PRL, 2020]
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● Single-particle, Lagrangian viewpoint

● Trajectories from Navier-Stokes: non-local

● Model: Langevin equation,

local up to noise

●             : model and DNS trajectories statistically similar

Viscous
stress

Pressure
Hessian

External
forcing

Lagrangian
derivative

Velocity gradient
dynamics:

Drift
Gaussian

white noise

[Chevillard and Meneveau, PRL, 2006;

Johnson and Meneveau, PRF, 2017;

Leppin and Wilczek, PRL, 2020]

A data-driven model for the small scales?
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● Single-particle, Lagrangian viewpoint

● Trajectories from Navier-Stokes: non-local

● Model: Langevin equation,

local up to noise

●             : model and DNS trajectories statistically similar

● How? Learn the PDF of A..

..construct a model featuring that steady-state PDF

Viscous
stress

Pressure
Hessian

External
forcing

Lagrangian
derivative

Velocity gradient
dynamics:

Drift
Gaussian

white noise

A data-driven model for the small scales?

[Chevillard and Meneveau, PRL, 2006;

Johnson and Meneveau, PRF, 2017;

Leppin and Wilczek, PRL, 2020]



  

66Normalizing flow for tailor-designed models 

How can we learn a PDF?

● Transform Gaussian into a target PDF

● Not just one shot.. Sequence of simple 
invertible transformations

● Works with high-dimensional PDFs 
(images)

Durkan, Bekasov, Murray and 
Papamakarios, “Cubic-Spline Flows”, 

arXiv:1906.02145 [stat.ML], 2019

[L. Dinh, J. Sohl-Dickstein, S. Bengio, (2017)]

[E. G. Tabak, E. Vanden-Eijnden, (2010)]



  

67Normalizing flow for tailor-designed models 

How can we learn a PDF?

● Transform Gaussian into a target PDF

● Not just one shot.. Sequence of simple 
invertible transformations

● Works with high-dimensional PDFs 
(images)

Durkan, Bekasov, Murray and 
Papamakarios, “Cubic-Spline Flows”, 

arXiv:1906.02145 [stat.ML], 2019

Gaussian random matrices          turbulent-like ensemble     

[E. G. Tabak, E. Vanden-Eijnden, (2010)]

[L. Dinh, J. Sohl-Dickstein, S. Bengio, (2017)]
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● Gaussian  …  A(K)    layer K    A(K+1)  …  Turbulent

Learning the velocity gradient PDF
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● Gaussian  …  A(K)    layer K    A(K+1)  …  Turbulent

Learning the velocity gradient PDF

The PDF of A(K) changes across each layer
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● Gaussian  …  A(K)    layer K    A(K+1)  …  Turbulent

Learning the velocity gradient PDF

The PDF of A(K) changes across each layer

Jacobian of K-th
transformation
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● Gaussian  …  A(K)    layer K    A(K+1)  …  Turbulent

Learning the velocity gradient PDF

The PDF of A(K) changes across each layer

 f(A): PDF of the turbulent 
velocity gradients

Jacobian of K-th
transformation
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● Gaussian  …  A(K)    layer K    A(K+1)  …  Turbulent

● Sequence of quasi-linear invertible transformations

Learning the velocity gradient PDF

The PDF of A(K) changes across each layer

 f(A): PDF of the turbulent 
velocity gradients

Jacobian of K-th
transformation
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● Gaussian  …  A(K)    layer K    A(K+1)  …  Turbulent

● Sequence of quasi-linear invertible transformations

Learning the velocity gradient PDF

The PDF of A(K) changes across each layer

 f(A): PDF of the turbulent 
velocity gradients
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● Gaussian  …  A(K)    layer K    A(K+1)  …  Turbulent

● Sequence of quasi-linear invertible transformations

● Maximum likelihood of the turbulent velocity gradient ensemble

Learning the velocity gradient PDF

The PDF of A(K) changes across each layer

 f(A): PDF of the turbulent 
velocity gradients
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● Learned f(A) through normalizing flow

● Reduced-order model..

Enforcing single-time statistics in our model

f(A) = PDF of turbulent velocity gradients
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● Learned f(A) through normalizing flow

● Reduced-order model..

..Liouville equation for single-time PDF

Enforcing single-time statistics in our model

f(A) = PDF of turbulent velocity gradients
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● Learned f(A) through normalizing flow

● Reduced-order model..

..Liouville equation for single-time PDF

Enforcing single-time statistics in our model

f(A) = PDF of turbulent velocity gradients

Learned
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● Learned f(A) through normalizing flow

● Reduced-order model..

..Liouville equation for single-time PDF

● Drift such that learned f(A) is a steady-state solution

Enforcing single-time statistics in our model

f(A) = PDF of turbulent velocity gradients

Learned
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● Learned f(A) through normalizing flow

● Reduced-order model..

..Liouville equation for single-time PDF

● Drift such that learned f(A) is a steady-state solution

Enforcing single-time statistics in our model

T(A;ψ): “Gauge” terms
anti-symmetric

f(A) = PDF of turbulent velocity gradients

Learned

f(A) imposed,
T(A) to be learned
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● Learn single-time PDF

● Construct system featuring 
that steady-state PDF

Bridging single- and multi-time statistics 
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● Learn single-time PDF

● Construct system featuring 
that steady-state PDF

● Optimize trajectories:       time 
correlations, conditional 
dynamics, (GAN, diffusive 
models, etc.)

Bridging single- and multi-time statistics 

[Li, Biferale, Bonaccorso, 
Scarpolini and Buzzicotti, arXiv 
physics.flu-dyn, 2023]
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● Learn single-time PDF

● Construct system featuring 
that steady-state PDF

● Optimize trajectories:       time 
correlations, conditional 
dynamics, (GAN, diffusive 
models, etc.)

● Independent single- and multi-
time optimizations

Bridging single- and multi-time statistics 

[Li, Biferale, Bonaccorso, 
Scarpolini and Buzzicotti, arXiv 
physics.flu-dyn, 2023]
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● Lagrangian realizations of the gradient from DNS A(t)

● Numerically integrate model realizations

Bridging single- and multi-time statistics 

Neural Net.(A;ψ)
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● Lagrangian realizations of the gradient from DNS A(t)

● Numerically integrate model realizations

● with specific drift

Bridging single- and multi-time statistics 

Neural Net.(A;ψ)
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● Lagrangian realizations of the gradient from DNS A(t)

● Numerically integrate model realizations

● with specific drift

● Optimize e.g., time correlations and conditional derivatives

Bridging single- and multi-time statistics 

DNS Model

Neural Net.(A;ψ)
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Single-time statistics: vorticity principal 
components PDF

Normalized vorticity components in 
the strain-rate eigenframe

Strain rate–vorticity alignments

DNS

Model

Strain-rate 
eigenvectors 

associated with 
ordered eigenvalues
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● Learn single-time PDF

● Construct system featuring 
that steady-state PDF

● Optimize trajectories:  enforce 
time correlations

Now two-time statistics 



  

89Time correlations and sample realizations 
Normalized correlations

Vorticity:

Strain rate:



  

90Time correlations and sample realizations 
Normalized correlations

Vorticity:

Strain rate:
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Chaotic dynamical system:

● Deterministic, aperiodic

Rely on chaos for a non-trivial model

[S. H. Strogatz, Nonlinear 
Dynamics and Chaos, (2000)]
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Chaotic dynamical system:

● Deterministic, aperiodic

● Positive Lyapunov exponent

Rely on chaos for a non-trivial model

[S. H. Strogatz, Nonlinear 
Dynamics and Chaos, (2000)]
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Chaotic dynamical system:

● Deterministic, aperiodic

● Positive Lyapunov exponent

● Converge from Gaussian to 
~turbulent ensemble
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Rely on chaos for a non-trivial model

[S. H. Strogatz, Nonlinear 
Dynamics and Chaos, (2000)]
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Chaotic dynamical system:

● Deterministic, aperiodic

● Positive Lyapunov exponent

● Converge from Gaussian to 
~turbulent ensemble
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Likelihood of the 
turbulent ensemble
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Rely on chaos for a non-trivial model

[S. H. Strogatz, Nonlinear 
Dynamics and Chaos, (2000)]
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● Normalizing flow to learn single-
time PDF

● Single-time PDF ~exact by 
construction

● Independent multi-time 
optimization for trajectories

● Deterministic, chaotic system

Conclusions: Tailor-designed model 
for the turbulent velocity gradients
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Something recurrent:
The kinematics of the velocity gradients

● Homogeneity and incompressibility

● Quantity = divergence of some field

● Homogeneity/no-flux implies zero average

Carbone and Wilczek, “Only two Betchov homogeneity 
constraints exist for isotropic turbulence”, JFM 948, (2022)
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Something recurrent:
The kinematics of the velocity gradients

● Homogeneity and incompressibility

● Quantity = divergence of some field

● Homogeneity/no-flux implies zero average

● Easy to show the Betchov relations..

● ..but how to find all possible homogeneity relations?

Carbone and Wilczek, “Only two Betchov homogeneity 
constraints exist for isotropic turbulence”, JFM 948, (2022)



  

98Kinematics of the velocity gradients

● Write the most general F

● Impose divergence function of only A

● Homogeneity constraints: solutions of linear PDE

● All solutions         All constraints

Carbone and Wilczek, “Only two Betchov homogeneity 
constraints exist for isotropic turbulence”, JFM 948, (2022)
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● Some generalization

● Several relations on pressure, Laplacian, vorticity, etc.

Eyink, JFM 549, (2006)
Capocci,  Johnson, Oughton, Biferale, Linkmann, JFM 963, (2023)

Kinematics of the velocity gradients
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 Velocity gradients at low Reynolds numbers

 Strain rate at high Reynolds numbers

 Velocity gradients at high Reynolds numbers

 Some applications: Quantifying energy cascade
Acknowledgments: Prof. Andy Bragg



  

101Coarse-grained velocity gradients and 
velocity increments

● Coarse-grained gradient at varying scale r
● Tilde: filtering at scale 
● Incompressibility issue! 

Carbone and Bragg, “Is vortex stretching the main cause 
of the turbulent energy cascade?”, JFM 883, (2020)



  

102Coarse-grained velocity gradients and 
velocity increments

● Coarse-grained gradient at varying scale r
● Tilde: filtering at scale 
● Incompressibility issue! 
● Recover standard increment for a scale-

independent filtering

Carbone and Bragg, “Is vortex stretching the main cause 
of the turbulent energy cascade?”, JFM 883, (2020)



  

103Coarse-grained velocity gradients and 
velocity increments

● Coarse-grained gradient at varying scale r
● Tilde: filtering at scale 
● Incompressibility issue! 
● Recover standard increment for a scale-

independent filtering

● Correction on the transverse increment only

Carbone and Bragg, “Is vortex stretching the main cause 
of the turbulent energy cascade?”, JFM 883, (2020)



  

104Coarse-grained velocity gradients and 
velocity increments
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● Coarse-grained gradient at varying scale r
● Solve incompressibility issue

● Energy transfer across the scales

Carbone and Bragg, “Is vortex stretching the main cause 
of the turbulent energy cascade?”, JFM 883, (2020)

SSA                       VS



  

8 4 0 4 8
3( 1 + 2)

8

4

0

4

8

1
2

 Velocity gradients at low Reynolds numbers

 Strain rate at high Reynolds numbers

 Velocity gradients at high Reynolds numbers

 Some applications: Iron particle combustion
Acknowledgments: Ing. Gabriel Thäter, Prof. Bettina 
Frohnapfel, Prof. Oliver T. Stein



  

106Iron particle combustion in turbulence
● Physical model: variable-density Navier-Stokes

● Low-Mach approximation



  

107Iron particle combustion in turbulence
● Physical model: variable-density Navier-Stokes

● Low-Mach approximation

● Coupling via Non-Uniform FFT
Carbone, Iovieno, Bragg, “Multiscale 
fluid--particle thermal interaction in 
isotropic turbulence”, JFM 881, (2019)
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Iron particle combustion in turbulence
● Physical model: Reacting iron particles

Hazenberg, van Oijen, Proc. Combust. 
Inst. 38(3),  (2021)
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 Velocity gradients at low Reynolds numbers
Analytic insight, onset of skewness, alignments and 
intermittency
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intermittency

 Strain rate at high Reynolds numbers 
Analytically parameterized the strain-rate PDF, sampled 
PDF via tailor-made model
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Analytic insight, onset of skewness, alignments and 
intermittency
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 Velocity gradients at high Reynolds numbers
Normalizing flow to learn the velocity gradient PDF, 
deterministic, chaotic model for the small scales
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 Velocity gradients at low Reynolds numbers
Analytic insight, onset of skewness, alignments and 
intermittency

 Strain rate at high Reynolds numbers 
Analytically parameterized the strain-rate PDF, sampled 
PDF via tailor-made model

 Velocity gradients at high Reynolds numbers
Normalizing flow to learn the velocity gradient PDF, 
deterministic, chaotic model for the small scales

 Some applications
Quantify average energy cascade,                         
Turbulence interacting with iron particle combustion
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