A journey into the turbulent velocity gradient dynamics

Maurizio Carbone

Theoretical Physics I, University of Bayreuth

Max Planck Institute for Dynamics and Self-Organization

Università degli Studi di Roma "Tor Vergata" October 3, 2023

anopean Research Council tablished by the European Commission

Multi-scale nature of turbulence

Incompressible, three-dimensional, Navier-Stokes turbulence $\nabla \cdot \mathbf{u} = 0$

 $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \nu \nabla^2 \mathbf{u} + \mathbf{F}$

Multi-scale nature of turbulence

Velocity gradients describe the small scales

Velocity gradients describe the small scales

Velocity gradients at low Reynolds numbers

Acknowledgments: Prof. Michael Wilczek

Strain rate at high Reynolds numbers

Velocity gradients at high Reynolds numbers

Some applications

 $A = \nabla u$

Geometry: strain and rotation rates • Ś

$$\boldsymbol{S} = rac{1}{2} \left(\boldsymbol{A} + \boldsymbol{A}^{\top}
ight), \ \boldsymbol{W} = rac{1}{2} \left(\boldsymbol{A} - \boldsymbol{A}^{\top}
ight)$$

Invariants: dissipation rate, enstrophy, etc. •

$$\varepsilon = 2 \operatorname{Tr} \left(\boldsymbol{S}^2 \right), \ \omega^2 = -2 \operatorname{Tr} \left(\boldsymbol{W}^2 \right)$$

Re Re>>1: Fully developed turbulence

Re=0: Gaussian **F** — **•** Gaussian **u**

 $A = \nabla u$

Geometry: strain and rotation rates • 1 1 \boldsymbol{S}

$$\boldsymbol{S} = \frac{1}{2} \left(\boldsymbol{A} + \boldsymbol{A}^{\top} \right), \ \boldsymbol{W} = \frac{1}{2} \left(\boldsymbol{A} - \boldsymbol{A}^{\top} \right)$$

Invariants: dissipation rate, enstrophy, etc. •

$$\varepsilon = 2 \operatorname{Tr} \left(\mathbf{S}^2 \right), \ \omega^2 = -2 \operatorname{Tr} \left(\mathbf{W}^2 \right)$$

 $\operatorname{Re} = \frac{UL}{\nu} = \frac{\operatorname{convecti}}{\operatorname{diffusiv}}$

Re Re>>1: Fully developed turbulence

Re=0: Gaussian **F** — **•** Gaussian **u**

A =
abla u

• Geometry: strain and rotation rates

$$oldsymbol{S} = rac{1}{2} \left(oldsymbol{A} + oldsymbol{A}^{ op}
ight), \; oldsymbol{W} = rac{1}{2} \left(oldsymbol{A} - oldsymbol{A}^{ op}
ight)$$

• Invariants: dissipation rate, enstrophy, etc.

$$\varepsilon = 2 \operatorname{Tr} (S^2), \ \omega^2 = -2 \operatorname{Tr} (W^2)$$

 $\operatorname{Re} = \frac{UL}{\nu} = \frac{\operatorname{convective}}{\operatorname{diffusive}}$

2D slice of the 3D dissipation-rate field at increasing Reynolds

Re=0: Gaussian **F** — **•** Gaussian **u**

Re

10

A =
abla u

• Geometry: strain and rotation rates

 ${\mathcal E}$

$$oldsymbol{S} = rac{1}{2} \left(oldsymbol{A} + oldsymbol{A}^{ op}
ight), \; oldsymbol{W} = rac{1}{2} \left(oldsymbol{A} - oldsymbol{A}^{ op}
ight)$$

• Invariants: dissipation rate, enstrophy, etc.

$$= 2 \operatorname{Tr} (\mathbf{S}^{2}), \ \omega^{2} = -2 \operatorname{Tr} (\mathbf{W}^{2})$$
$$\operatorname{Re} = \frac{UL}{\nu} = \frac{\operatorname{convective}}{\operatorname{diffusive}}$$

2D slice of the 3D dissipation-rate field at increasing Reynolds

A =
abla u

• Geometry: strain and rotation rates

$$\boldsymbol{S} = \frac{1}{2} \left(\boldsymbol{A} + \boldsymbol{A}^{\top} \right), \ \boldsymbol{W} = \frac{1}{2} \left(\boldsymbol{A} - \boldsymbol{A}^{\top} \right)$$

 $\varepsilon = 2 \operatorname{Tr} (\mathbf{S}^2), \ \omega^2 = -2 \operatorname{Tr} (\mathbf{W}^2)$

Invariants: dissipation rate, enstrophy, etc.

2D slice of the 3D dissipation-rate field at increasing Reynolds

 $\operatorname{Re} = \frac{UL}{\nu} = \frac{\operatorname{convective}}{\operatorname{diffusive}}$

Re=0: Gaussian **F** — **>** Gaussian **u**

Re>>1: Fully developed turbulence

11

Features of fully developed turbulence

• Skewness, cascades

 $\left< \operatorname{Tr}(\boldsymbol{S}^3) \right> < 0$

Features of fully developed turbulence

- Skewness, cascades
- Intermittency, anomalous scaling

4

13

 $\left< \operatorname{Tr}(\boldsymbol{S}^3) \right> < 0$

 $\mathcal{R} = -\mathrm{Tr}\left(\mathbf{A}^3\right)/3$

4

2

0

-2

-4

-4

0)

Features of fully developed turbulence

• Skewness, cascades

 $\langle \operatorname{Tr}(\boldsymbol{S}^3) \rangle < 0$

 Intermittency, anomalous scaling

 $\left\langle A_{11}^4 \right\rangle \gg 3 \left\langle A_{11}^2 \right\rangle^2$

• Alignments strain rate-vorticity

 $\left\langle \operatorname{Tr}\left(\boldsymbol{S}\boldsymbol{W}^{2}\right)\right\rangle > 0$

Do low-Reynolds flows exhibit any of the features of high-Reynolds turbulence? ^[1,2]

How do the skewness, intermittency, alignments, etc. establish as Reynolds increases?

[1] Yakhot and Donzis, Phys. Rev. Lett., (2017)[2] Gotoh and Yang, Philos. Trans. Royal Soc. A, (2022)

? ?? ??? ???????

Re

Do low-Reynolds flows exhibit any of the features of high-Reynolds turbulence? ^[1,2]

????????

How do the skewness, intermittency, alignments, etc. establish as Reynolds increases?

 \succ Wyld expansion of the Navier-Stokes equations ^[3]

???

➢Velocity gradient modelling ^[4,5]

??

[1] Yakhot and Donzis, Phys. Rev. Lett., (2017)

- [2] Gotoh and Yang, Philos. Trans. Royal Soc. A, (2022)
- [3] Wyld, Ann.Phys, (1961)

?

- [4] Meneveau, Annu. Rev. Fluid Mech, (2011)
- [5] Leppin and M. Wilczek, Phys. Rev. Lett., (2020)

Re

Re

Re=0: Gaussian **F** — Gaussian **u**

Re>>1: Fully developed turbulence

Velocity field $oldsymbol{u}(oldsymbol{x},t),\,oldsymbol{u},oldsymbol{x}\in\mathbb{R}^3$

large scales, white in time

Re

Re=0: Gaussian **F** — **>** Gaussian **u**

Velocity field $oldsymbol{u}(oldsymbol{x},t),\,oldsymbol{u},oldsymbol{x}\in\mathbb{R}^3$

large scales, white in time

From the velocity field to the Lagrangian modelling of the velocity gradient

Langevin for ensemble that shares the same A

 $Tr(\boldsymbol{A}) = 0 \qquad \text{unclosed} \\ d\boldsymbol{A} = Re\left[-\widetilde{\boldsymbol{A}^2} - \left\langle \widetilde{\boldsymbol{H}} | \boldsymbol{A} \right\rangle\right] dt + \left\langle \nabla^2 \boldsymbol{A} | \boldsymbol{A} \right\rangle dt + \sigma \nabla d\boldsymbol{F} \\ \text{Self interaction, pressure Hessian, viscous Laplacian, Gaussian forcing}$

• Fewer degrees of freedom: unclosed terms, modelling!

From the velocity field to the Lagrangian modelling of the velocity gradient

Langevin for ensemble that shares the same A

 $Tr(\mathbf{A}) = 0 \qquad \text{unclosed} \\ d\mathbf{A} = Re\left[-\widetilde{\mathbf{A}^2} - \left\langle \widetilde{\mathbf{H}} | \mathbf{A} \right\rangle\right] dt + \left\langle \nabla^2 \mathbf{A} | \mathbf{A} \right\rangle dt + \sigma \nabla d\mathbf{F} \\ Self interaction, pressure Hessian, viscous Laplacian, Gaussian forcing$

- Fewer degrees of freedom: unclosed terms, modelling!
- Re=0: Gaussian, known Hessian and viscous terms

$$\left\langle \widetilde{\boldsymbol{H}} \middle| \boldsymbol{A} \right\rangle = -\frac{2}{7}\widetilde{\boldsymbol{S}^2} - \frac{2}{5}\widetilde{\boldsymbol{W}^2} + \mathcal{O}(\text{Re})$$

 $\left\langle \nabla^2 \boldsymbol{A} \middle| \boldsymbol{A} \right\rangle = -\gamma_0 \boldsymbol{A} + \mathcal{O}(\text{Re})$

- Pressure Hessian: exact at first order
- Viscous corrections: to be modeled

Modelling through tensor function representation ²³

Modeling

$$\left\langle -\operatorname{Re}\widetilde{\boldsymbol{H}} + \nabla^{2}\boldsymbol{A} \middle| \boldsymbol{A} \right\rangle = \sum_{n=1}^{8} \gamma_{n}\boldsymbol{B}_{n}(\boldsymbol{A})$$

- Basis tensors: second order in A
- Constant coefficients γ_n

Wyld zeroth-order expansion

$$d\mathbf{A} = -\gamma_0 \mathbf{A} dt + \sigma d\nabla F + \\
+ \operatorname{Re} \left[\operatorname{Re} \delta_1 S + \operatorname{Re} \delta_2 W + \left(\delta_3 - \frac{5}{7} \right) \widetilde{S^2} + \\
+ (\delta_5 - 1) \left(SW + WS \right) + \left(\delta_6 - \frac{3}{5} \right) \widetilde{W^2} \right] dt + \operatorname{Gauge}$$

Modelling through tensor function representation ²⁴

Modeling

$$\left\langle -\operatorname{Re}\widetilde{\boldsymbol{H}} + \nabla^{2}\boldsymbol{A} \middle| \boldsymbol{A} \right\rangle = \sum_{n=1}^{8} \gamma_{n}\boldsymbol{B}_{n}(\boldsymbol{A})$$

Basis tensors: second order in A

Wuld zoroth order expension

Constant coefficients γ_n

Constraints

Unity time scale $\left\langle \operatorname{Tr}\left(\boldsymbol{S}^{2}\right) \right\rangle = rac{1}{2}$

Homogeneity $\langle \operatorname{Tr} (\boldsymbol{A}^2) \rangle = 0 \quad \langle \operatorname{Tr} (\boldsymbol{A}^3) \rangle = 0$ Wyld, weak coupling $\langle \operatorname{Tr} (\boldsymbol{S}^3) \rangle = S_3 \operatorname{Re}$ $\langle \operatorname{Tr} (\boldsymbol{S}^2 \boldsymbol{W}^2) \rangle = -\frac{1}{12} + X_5 \operatorname{Re}^2$

$$d\mathbf{A} = -\gamma_0 \mathbf{A} dt + \sigma d\nabla \mathbf{F} + + \operatorname{Re} \left[\operatorname{Re} \delta_1 \mathbf{S} + \operatorname{Re} \delta_2 \mathbf{W} + \left(\delta_3 - \frac{5}{7} \right) \widetilde{\mathbf{S}^2} + \left(\delta_5 - 1 \right) (\mathbf{SW} + \mathbf{WS}) + \left(\delta_6 - \frac{3}{5} \right) \widetilde{\mathbf{W}^2} \right] dt + \operatorname{Gauge}$$

Solvable Fokker-Planck Equation

Velocity gradient PDF parametrized through the invariants

Polynomial coefficients

$$\alpha(\mathcal{I})f(\mathcal{I}) + v_k(\mathcal{I})\frac{\partial f}{\partial \mathcal{I}_k}(\mathcal{I}) - D_{jk}(\mathcal{I})\frac{\partial^2 f}{\partial \mathcal{I}_j \partial \mathcal{I}_k}(\mathcal{I}) = 0$$

$$\begin{aligned} \mathcal{I}_1 &= \operatorname{Tr}\left(\mathbf{S}^2\right) \quad \mathcal{I}_2 = \operatorname{Tr}\left(\mathbf{W}^2\right) \\ \mathcal{I}_3 &= \operatorname{Tr}\left(\mathbf{S}^3\right) \quad \mathcal{I}_4 = \operatorname{Tr}\left(\mathbf{S}\mathbf{W}^2\right) \\ \mathcal{I}_5 &= \operatorname{Tr}\left(\mathbf{S}^2\mathbf{W}^2\right) \quad \begin{array}{l} \text{Independent} \\ \text{invariants} \end{array}$$

Solvable Fokker-Planck Equation

Velocity gradient PDF parametrized through the invariants

Polynomial coefficients

$$\alpha(\mathcal{I})f(\mathcal{I}) + v_k(\mathcal{I})\frac{\partial f}{\partial \mathcal{I}_k}(\mathcal{I}) - D_{jk}(\mathcal{I})\frac{\partial^2 f}{\partial \mathcal{I}_j \partial \mathcal{I}_k}(\mathcal{I}) = 0$$

$$\mathcal{I}_{1} = \operatorname{Tr} \left(\boldsymbol{S}^{2} \right) \quad \mathcal{I}_{2} = \operatorname{Tr} \left(\boldsymbol{W}^{2} \right)$$
$$\mathcal{I}_{3} = \operatorname{Tr} \left(\boldsymbol{S}^{3} \right) \quad \mathcal{I}_{4} = \operatorname{Tr} \left(\boldsymbol{S} \boldsymbol{W}^{2} \right)$$
$$\mathcal{I}_{5} = \operatorname{Tr} \left(\boldsymbol{S}^{2} \boldsymbol{W}^{2} \right) \quad \begin{array}{c} \text{Independent} \\ \text{invariants} \end{array}$$

 $f = \frac{225\sqrt{5}}{\pi^4}e^{-5\mathcal{I}_1 + 3\mathcal{I}_2} + \begin{array}{l} \text{Polynomial x Gaussian} \\ + \operatorname{Re}_{\gamma} \frac{3600\sqrt{5}S_3\left(25\mathcal{I}_3 - 21\mathcal{I}_4\right)}{7\pi^4}e^{-5\mathcal{I}_1 + 3\mathcal{I}_2} + \\ + \operatorname{Re}_{\gamma}^2 \frac{720\sqrt{5}}{49\pi^4} \left(-16320S_3^2\mathcal{I}_1\mathcal{I}_2 - 6860S_3^2\mathcal{I}_1 - 1344S_3^2\mathcal{I}_2^2 - 140S_3^2\mathcal{I}_2 + 50000S_3^2\mathcal{I}_3^2 + \\ - 84000S_3^2\mathcal{I}_3\mathcal{I}_4 + 35280S_3^2\mathcal{I}_4^2 + 42240S_3^2\mathcal{I}_5 + 2240S_3^2 - 22950X_5\mathcal{I}_1\mathcal{I}_2 - 1575X_5\mathcal{I}_1 + \\ - 1890X_5\mathcal{I}_2^2 - 1575X_5\mathcal{I}_2 + 59400X_5\mathcal{I}_5 \right)e^{-5\mathcal{I}_1 + 3\mathcal{I}_2}. \end{array}$

Solvable Fokker-Planck Equation

Velocity gradient PDF parametrized through the invariants

Polynomial coefficients

$$\alpha(\mathcal{I})f(\mathcal{I}) + v_k(\mathcal{I})\frac{\partial f}{\partial \mathcal{I}_k}(\mathcal{I}) - D_{jk}(\mathcal{I})\frac{\partial^2 f}{\partial \mathcal{I}_j \partial \mathcal{I}_k}(\mathcal{I}) = 0$$

$$egin{aligned} \mathcal{I}_1 &= \mathrm{Tr}\left(oldsymbol{S}^2
ight) & \mathcal{I}_2 &= \mathrm{Tr}\left(oldsymbol{W}^2
ight) \ \mathcal{I}_3 &= \mathrm{Tr}\left(oldsymbol{S}^3
ight) & \mathcal{I}_4 &= \mathrm{Tr}\left(oldsymbol{S}oldsymbol{W}^2
ight) \ \mathcal{I}_5 &= \mathrm{Tr}\left(oldsymbol{S}^2oldsymbol{W}^2
ight) & \begin{array}{c} \mathsf{Independent} \ \mathsf{invariants} \end{aligned}$$

 $f = \frac{225\sqrt{5}}{\pi^4} e^{-5\mathcal{I}_1 + 3\mathcal{I}_2} + \frac{\text{Polynomial x Gaussian}}{\text{Polynomial x Gaussian}} + \operatorname{Re}_{\gamma} \frac{3600\sqrt{5}S_3 \left(25\mathcal{I}_3 - 21\mathcal{I}_4\right)}{7\pi^4} e^{-5\mathcal{I}_1 + 3\mathcal{I}_2} + \frac{\operatorname{Re}_{\gamma} \frac{720\sqrt{5}}{49\pi^4} \left(-16320S_3^2\mathcal{I}_1\mathcal{I}_2 - 6860S_3^2\mathcal{I}_1 - 1344S_3^2\mathcal{I}_2^2 - 140S_3^2\mathcal{I}_2 + 50000S_3^2\mathcal{I}_3^2 + 84000S_3^2\mathcal{I}_3\mathcal{I}_4 + 35280S_3^2\mathcal{I}_4^2 + 42240S_3^2\mathcal{I}_5 + 2240S_3^2 - 22950X_5\mathcal{I}_1\mathcal{I}_2 - 1575X_5\mathcal{I}_1 + 1890X_5\mathcal{I}_2^2 - 1575X_5\mathcal{I}_2 + 59400X_5\mathcal{I}_5)e^{-5\mathcal{I}_1 + 3\mathcal{I}_2}.$

Onset of non-Gaussianity in the velocity gradient statistics

Onset of non-Gaussianity in the velocity gradient 29 statistics

Onset of non-Gaussianity in the velocity gradient ₃₀ statistics

Skewness in the strain-rate PDF

$$oldsymbol{S} = \sum_{i=1}^{3} \lambda_i oldsymbol{v}_i oldsymbol{v}_i^ op$$

PDF weighted by Wigner repulsion term J_s

$$f_S(\mathbf{S}) \mathrm{d}\mathbf{S} = f(\lambda) J_S(\lambda) \mathrm{d}\lambda_1 \mathrm{d}\lambda_2$$

 $J_S \propto \prod_{i \neq j} |\lambda_i - \lambda_j|$

- Two strain-rate eigenvalues are similar..
- ..the other large and negative
- Very simple contours!

Teardrop PDF of the principal invariants

 $\mathcal{Q} = -\mathrm{Tr}\left(\mathbf{A}^2\right)/2$ $\mathcal{R} = -\mathrm{Tr}\left(\mathbf{A}^3\right)/3$

- PDF skewed along right Vieillefosse tail
- Intermittency establishes at larger Re

32

The non-monotonic alignments of the vorticity with the strain rate

- Vorticity aligns with extensional direction at small Reynolds
- Alignment with intermediate eigenvector establishes later on

Velocity gradient realizations: DNS and model

 Time correlations through gauge DNS Low-Re model terms $Re_{\gamma} = 0.1$ $Re_{\gamma} = 0.1$ $A_{11}(t)$ 0 $Re_{\gamma} = 1.0$ $Re_{\gamma} = 1.0$ 1 $A_{11}(t)$ -1 $Re_{\lambda} = 100$ 1 $A_{11}(t)$ $^{-1}$ 5 10 20 15 25 0 30 Reyt

 $\operatorname{Tr}(\boldsymbol{A}) = 0$ $d\boldsymbol{A} = \operatorname{Re}\left[-\widetilde{\boldsymbol{A}^{2}} - \left\langle\widetilde{\boldsymbol{H}}|\boldsymbol{A}\right\rangle\right] dt + \left\langle\nabla^{2}\boldsymbol{A}|\boldsymbol{A}\right\rangle dt + \sigma\boldsymbol{\nabla}d\boldsymbol{F}$

Velocity gradient realizations: time correlations

• Strain-rate correlations at small Re

$$C_{\mathbf{A}}(\tau) = \frac{\langle A_{ij}(0)A_{ij}(\tau)\rangle}{\langle A_{ij}(0)A_{ij}(0)\rangle}$$

• Turbulence hinders time correlations

Random flows at low Reynolds: Conclusions

 Similar velocity gradient realizations and time correlations in the SDE model and DNS • Closed model for the velocity gradient (no fitting parameters)

36

Analytically shown the onset of
 skewness, alignments, intermittency

Velocity gradients at low Reynolds numbers

Strain rate at high Reynolds numbers

Acknowledgments: Prof. Michael Wilczek

Velocity gradients at high Reynolds numbers

Some applications

Strain rate at high Reynolds

Strain rate at high Reynolds

Tailor-made high-Reynolds models

$$\nabla \cdot \mathbf{u} = 0$$
Strain-rate $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \nu \nabla^2 \mathbf{u} + \mathbf{F}$
dynamics:
$$\dot{\mathbf{S}} = -\mathbf{S}^2 - \langle \mathbf{W}^2 | \mathbf{S} \rangle - \langle \mathbf{H} | \mathbf{S} \rangle + \nu \langle \nabla^2 \mathbf{S} | \mathbf{S} \rangle + \sigma (\mathbf{\Gamma} + \mathbf{\Gamma}^{\top})^{-4}$$

$$\overset{\mathbf{S}}{\underset{\text{Stresses}}{}} \xrightarrow{\text{Pressure}}_{\text{Hessian}} \xrightarrow{\text{Viscous}}_{\text{stress}} \xrightarrow{\text{Tensorial}}_{\text{noise}} \xrightarrow{\mathbf{S}}_{-8} \xrightarrow{\mathbf{A}}_{-4} \xrightarrow{\mathbf{0}}_{\mathbf{A}} \xrightarrow{\mathbf{A}}_{\sqrt{3}(\lambda_1 + \lambda_2)}$$

40

 $f(x(\lambda))$:

• Single-particle modelling: unclosed equations

Tailor-made high-Reynolds models

 $\nabla \cdot \mathbf{u} = 0$

Strain-rate $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \nu \nabla^2 \mathbf{u} + \mathbf{F}$ dynamics:

$$\dot{\mathbf{S}} = -\mathbf{S}^2 - \left\langle \mathbf{W}^2 \middle| \mathbf{S} \right\rangle - \left\langle \mathbf{H} \middle| \mathbf{S} \right\rangle + \nu \left\langle \nabla^2 \mathbf{S} \middle| \mathbf{S} \right\rangle + \sigma \left(\mathbf{\Gamma} + \mathbf{\Gamma}^\top \right)$$
Centrifugal Pressure Viscous Tensorial

stress

Hessian

$$\frac{\partial}{\partial S_{ij}} \left[\left(-S_{ij}^2 + N_{ij} \right) f - \frac{\sigma^2}{2} Q_{ijpq} \frac{\partial f}{\partial S_{pq}} \right] = 0$$

stresses

• Single-particle modelling: unclosed equations

• Usual: class of models (SDEs), fit the equation parameters to match DNS

 $f(x(\lambda)):$ 41

Ò

 $\sqrt{3}(\lambda_1 + \lambda_2)$

 $\lambda_1 - \lambda_2$

noise

-8 | -8

- Single-particle modelling: unclosed equations
- Usual: class of models (SDEs), fit the equation parameters to match DNS

- Single-particle modelling: unclosed equations
- Usual: class of models (SDEs), fit the equation parameters to match DNS
- Here: fit the solution from DNS, construct a model with that solution

- Usual: class of models (SDEs), fit the equation parameters to match DNS
- Here: fit the solution from DNS, construct a model with that solution

...data-driven, DNS database

Strain-rate PDF: contours

$$\mathcal{I}_1 = \operatorname{Tr}\left(\mathbf{S}^2\right), \ \mathcal{I}_3 = \operatorname{Tr}\left(\mathbf{S}^3\right)$$

• Contours can be fitted \approx exactly $\alpha_0(f) = \mathcal{I}_1^3 + \alpha_1(f)\mathcal{I}_1^{3/2}\mathcal{I}_3 + \alpha_2(f)\mathcal{I}_3^2$

• α_1 : skewness

Strain-rate PDF: contours

$$\mathcal{I}_1 = \operatorname{Tr}\left(\mathbf{S}^2\right), \ \mathcal{I}_3 = \operatorname{Tr}\left(\mathbf{S}^3\right)$$

- Contours can be fitted \approx exactly $\alpha_0(f) = \mathcal{I}_1^3 + \alpha_1(f)\mathcal{I}_1^{3/2}\mathcal{I}_3 + \alpha_2(f)\mathcal{I}_3^2$
- α₁: skewness
- Approximations on the coefficients
- *f:* lognormal across contours

 10^{-1}

10-3

 10^{-7}

 10^{-9}

(α⁰) 10⁻⁵

 $Re_{\lambda} = 140$

 $Re_{\lambda} = 220$

Strain-rate PDF: whole PDF

$\mathcal{I}_1 = \operatorname{Tr}\left(\mathbf{S}^2\right), \ \mathcal{I}_3 = \operatorname{Tr}\left(\mathbf{S}^3\right)$

Fitting goes like..

$$\alpha_0 = \mathcal{I}_1^3 + \alpha_1 \mathcal{I}_1^{3/2} \mathcal{I}_3 + \alpha_2 \mathcal{I}_3^2$$
$$f(\mathbf{S}) \approx f(\alpha_0)$$

$$f = \mathcal{N} \exp\left(-\frac{(\log \alpha_0 - \mu)^2}{\Sigma^2}\right)$$

Strain-rate PDF, $log_{10}f(\lambda)$

Strain-rate PDF: whole PDF

$\mathcal{I}_1 = \operatorname{Tr}\left(\mathbf{S}^2\right), \ \mathcal{I}_3 = \operatorname{Tr}\left(\mathbf{S}^3\right)$

Fitting goes like..

$$\alpha_0 = \mathcal{I}_1^3 + \alpha_1 \mathcal{I}_1^{3/2} \mathcal{I}_3 + \alpha_2 \mathcal{I}_3^2$$

$$f(\mathbf{S}) \approx f(\alpha_0)$$

$$f = \mathcal{N} \exp\left(-\frac{(\log \alpha_0 - \mu)^2}{\Sigma^2}\right)$$

- Capture PDF moments (core) and tails
 Minimal number of parameters
- Minimal number of parameters

Strain-rate PDF: whole PDF

Strain-rate PDF, $\log_{10} f(\lambda)$

Strain-rate principal invariants PDF

The geometry of 3x3 symmetric, traceless, isotropic matrix:

$$\begin{split} \mathrm{d}\mathbf{S}f(\mathbf{S}) &= \mathcal{N}\mathrm{d}\mathcal{I}_1\mathrm{d}\mathcal{I}_3f(\mathcal{I}_1,\mathcal{I}_3) = \mathcal{N}'\Pi_{i\neq j}|\lambda_i - \lambda_j|\mathrm{d}\lambda_i f(\lambda) \\ \text{Cartesian} & \text{Traces} & \text{Eigenframe} \end{split}$$

Tailor-made Langevin and FP equation

So far:

- Analytic PDF, no need to run simulations!
- Time correlations?

Fokker-Planck equation + tensor function representation

Contract Scheduler Unclosed Known (fitting) $\frac{\partial}{\partial S_{ij}} \left[\left(-S_{ij}^2 + N_{ij} \right) f - \frac{\sigma^2}{2} Q_{ijpq} \frac{\partial f}{\partial S_{pq}} \right] = 0$

 $N_{ij} = \text{centrifugal} + \text{pressure Hessian} + \text{viscous stresses} =$

 $\sqrt{3}(\lambda_1+\lambda_2)$

 $f(x(\lambda))$:

 $\lambda_1 - \lambda_2$

-4

Tailor-made Langevin and FP equation

So far:

- Analytic PDF, no need to run simulations!
- Time correlations?

Fokker-Planck equation + tensor function representation

P Unclosed Known (fitting) $\frac{\partial}{\partial S_{ij}} \left[\left(-S_{ij}^2 + N_{ij} \right) f - \frac{\sigma^2}{2} Q_{ijpq} \frac{\partial f}{\partial S_{nq}} \right] = 0$

 $N_{ij} = \text{centrifugal} + \text{pressure Hessian} + \text{viscous stresses} = \sum \gamma_n(\mathcal{I}) B_{ij}^n$

 $\sqrt{3}(\lambda_1 + \lambda_2)$

 $f(x(\lambda))$:

 $\lambda_1 - \lambda_2$

-4

Momentarily assume detailed balance: get coefficients $-S_{ij}^2 + \gamma_n B_{ij}^n = \frac{\sigma^2}{2} Q_{ijpq} \frac{\partial \log f}{\partial S_{nq}} \longrightarrow \gamma_n(\mathcal{I})$

Tailor-made Langevin and FP equation

So far:

- Analytic PDF, no need to run simulations!
- Time correlations?

Fokker-Planck equation + tensor function representation

Variable Wights and Solution Unclosed Known (fitting) $\frac{\partial}{\partial S_{ij}} \left[\left(-S_{ij}^2 + N_{ij} \right) f - \frac{\sigma^2}{2} Q_{ijpq} \frac{\partial f}{\partial S_{pq}} \right] = 0$

 $N_{ij} = \text{centrifugal} + \text{pressure Hessian} + \text{viscous stresses} =$

 $=\sum_{n=1}^{d}\gamma_n(\mathcal{I})B_{ij}^n$

 $\sqrt{3}(\lambda_1+\lambda_2)$

 $f(x(\lambda))$:

 $\lambda_1 - \lambda_2$

Momentarily assume detailed balance: get coefficients

$$-S_{ij}^{2} + \gamma_{n}B_{ij}^{n} = \frac{\sigma^{2}}{2}Q_{ijpq}\frac{\partial \log f}{\partial S_{pq}} \longrightarrow \gamma_{n}(\mathcal{I})$$

$$\frac{\partial f}{\partial S_{pq}}(\mathcal{I}) = \frac{\partial f}{\partial \mathcal{I}_{k}}M_{kn}^{[1]}B_{pq}^{n} \text{ Basis tensors from } S$$

$$\frac{\partial B_{ij}^{n}}{\partial S_{pq}} = \Gamma_{lm}^{n,0}B_{ij}^{l}B_{pq}^{m} + \Gamma_{lm}^{n,1}B_{ip}^{l}B_{jq}^{m} + \Gamma_{lm}^{n,2}B_{iq}^{l}B_{jp}^{m}$$
[1] Carbone and Wilczek, JFM 948, (2022)

Strain-rate PDF $\log_{10} f(\lambda)$

• Multiplicative noise (eigenframe rotation) $dS = N dt + \sqrt{2} dt \left[\sigma \Gamma + g \left(S \mathcal{W} - \mathcal{W} S\right)\right]$

Strain-rate PDF $\log_{10} f(\lambda)$

Beyond detailed balance:

• Multiplicative noise (eigenframe rotation) $dS = N dt + \sqrt{2} dt \left[\mathbf{\sigma} \mathbf{\Gamma} + g \left(\mathbf{S} \mathbf{W} - \mathbf{W} \mathbf{S} \right) \right]$

Symmetric Anti-symmetric Gaussian white noise

Carbone, Iovieno, Bragg, "Symmetry transformation and dimensionality reduction of the anisotropic pressure Hessian", *JFM* **900**, (2020)

Phenomenological modeling at high Reynolds: Conclusions

• Model designed for the strain-rate ...single-point stats not so complicated

58

- Why that contours shape?
- Extend the fitting to the full gradient PDF (5D)

Velocity gradients at low Reynolds numbers

Strain rate at high Reynolds numbers

<u>Velocity gradients at high Reynolds numbers</u>

Acknowledgments: Vincent Peterhans, Prof. Alexander [°] Ecker, Prof. Michael Wilczek

Some applications

 $\nabla \cdot \mathbf{u} = 0$

- Single-particle, Lagrangian viewpoint
- Trajectories from Navier-Stokes: non-local

 $\nabla \cdot \mathbf{u} = 0$

- Single-particle, Lagrangian viewpoint
- Trajectories from Navier-Stokes: non-local

 $\nabla \cdot \mathbf{u} = 0$

- Single-particle, Lagrangian viewpoint
- Trajectories from Navier-Stokes: non-local

 $\nabla \cdot \mathbf{u} = 0$

- Single-particle, Lagrangian viewpoint
- Trajectories from Navier-Stokes: non-local

 $\nabla \cdot \mathbf{u} = 0$

 $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \nu \nabla^2 \mathbf{u} + \mathbf{F}$

- Single-particle, Lagrangian viewpoint
- Trajectories from Navier-Stokes: non-local

• $A \simeq \mathcal{A}$: model and DNS trajectories statistically similar

 $\nabla \cdot \mathbf{u} = 0$

 $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \nu \nabla^2 \mathbf{u} + \mathbf{F}$

- Single-particle, Lagrangian viewpoint
- Trajectories from Navier-Stokes: non-local

- $A \simeq \mathcal{A}$: model and DNS trajectories statistically similar
- How? Learn the PDF of A..

.. construct a model featuring that steady-state PDF

Normalizing flow for tailor-designed models

How can we learn a PDF?

- Transform Gaussian into a target PDF [E. G. Tabak, E. Vanden-Eijnden, (2010)]
- Not just one shot.. Sequence of simple invertible transformations [L. Dinh, J. Sohl-Dickstein, S. Bengio, (2017)]

 Works with high-dimensional PDFs (images)

Durkan, Bekasov, Murray and Papamakarios, "Cubic-Spline Flows", arXiv:1906.02145 [stat.ML], 2019

Normalizing flow for tailor-designed models

How can we learn a PDF?

- Transform Gaussian into a target PDF [E. G. Tabak, E. Vanden-Eijnden, (2010)]
- Not just one shot.. Sequence of simple invertible transformations [L. Dinh, J. Sohl-Dickstein, S. Bengio, (2017)]

 Works with high-dimensional PDFs (images) Durkan, Bekasov, Murray and Papamakarios, "Cubic-Spline Flows", arXiv:1906.02145 [stat.ML], 2019

Gaussian random matrices ------ turbulent-like ensemble

Learning the velocity gradient PDF $\mathcal{A}^{(0)} \sim g$ • Gaussian ... $\mathcal{A}^{(K)}$ layer K $\mathcal{A}^{(K+1)}$... Turbulent

Learning the velocity gradient PDF 69 $\mathcal{A}^{(0)} \sim g$ $\mathcal{A}^{(32)} \sim f$ • Gaussian ... $\mathcal{A}^{(K)}$ layer K $\mathcal{A}^{(K+1)}$... Turbulent The PDF of $\mathcal{A}^{(K)}$ changes across each layer

Learning the velocity gradient PDF $\mathcal{A}^{(0)} \sim g$ $\mathcal{A}^{(32)} \sim f$

 $\boldsymbol{\mathcal{A}}^{(0)} \sim g \qquad \qquad \boldsymbol{\mathcal{A}}^{(32)} \sim f \\ \bullet \text{ Gaussian } \dots \boldsymbol{\mathcal{A}}^{(\textit{K})} \text{ layer K } \boldsymbol{\mathcal{A}}^{(\textit{K+1})} \dots \text{ Turbulent }$

The PDF of $A^{(K)}$ changes across each layer

$$\log g + \sum_{K=1}^{32} \log \left| J^{(K)}(\mathcal{A}^{(K)}; \theta) \right| = \log f$$

Jacobian of K-th
transformation

Learning the velocity gradient PDF $\mathcal{A}^{(0)} \sim g$ $\mathcal{A}^{(32)} \sim f$

 $\boldsymbol{\mathcal{A}}^{(0)} \sim g \qquad \qquad \boldsymbol{\mathcal{A}}^{(32)} \sim f \\ \bullet \text{ Gaussian } \dots \ \boldsymbol{\mathcal{A}}^{(K)} \text{ layer K } \boldsymbol{\mathcal{A}}^{(K+1)} \dots \text{ Turbulent }$

The PDF of $A^{(K)}$ changes across each layer

$$\log g + \sum_{K=1}^{32} \log \left| J^{(K)}(\mathcal{A}^{(K)}; \theta) \right| = \log f$$

Jacobian of K-th
transformation

Learning the velocity gradient PDF $\mathcal{A}^{(0)} \sim g$ $\boldsymbol{\mathcal{A}}^{(0)} \sim g \qquad \qquad \boldsymbol{\mathcal{A}}^{(32)} \sim f \\ \bullet \text{ Gaussian } \dots \boldsymbol{\mathcal{A}}^{(\textit{K})} \text{ layer K } \boldsymbol{\mathcal{A}}^{(\textit{K+1})} \dots \text{ Turbulent }$ The PDF of $A^{(K)}$ changes across each layer

$$\log g + \sum_{K=1}^{32} \log \left| J^{(K)}(\mathcal{A}^{(K)}; \theta) \right| = \log f$$

Jacobian of K-th
transformation
$$f(\mathcal{A}): \text{PDF of the turbulent}$$
velocity gradients

72

Sequence of quasi-linear invertible transformations
Learning the velocity gradient PDF 73 $\mathcal{A}^{(0)} \sim q$ $\mathcal{A}^{(0)} \sim g$ Gaussian ... $\mathcal{A}^{(K)}$ layer K $\mathcal{A}^{(K+1)}$... Turbulent The PDF of $A^{(K)}$ changes across each layer 32 $\log g + \sum_{K=1} \log \left| J^{(K)}(\mathcal{A}^{(K)}; \theta) \right|$ $=\log f$ *f*(*A*): PDF of the turbulent Jacobian of K-th velocity gradients transformation Sequence of quasi-linear invertible transformations one component updated 2 linear layers X 64 Input: 7 components $A_{ij}^{(K)}$ $\mathbf{A}^{(K)}$ S

 $= A_{ii}^{(K+1)}$

b

Learning the velocity gradient PDF 74 $\mathcal{A}^{(0)} \sim q$ $\begin{array}{c} \boldsymbol{\mathcal{A}}^{(0)} \sim g & \qquad \qquad \boldsymbol{\mathcal{A}}^{(32)} \sim f \\ \text{Gaussian} \ \dots \ \boldsymbol{\mathcal{A}}^{(K)} \ \textit{layer} \ \textit{K} \ \boldsymbol{\mathcal{A}}^{(K+1)} \ \dots \ \text{Turbulent} \end{array}$ The PDF of $A^{(K)}$ changes across each layer 32 $\log g + \sum_{K=1}^{N} \log \left| J^{(K)}(\mathcal{A}^{(K)}; \theta) \right|$ Jacobian of K-th $=\log f$ *f*(*A*): PDF of the turbulent velocity gradients transformation Sequence of quasi-linear invertible transformations one component updated 2 linear layers X 64 nput: 7 components $A_{ij}^{(K)}$ **A**(K

Maximum likelihood of the turbulent velocity gradient ensemble

$$\max_{\theta} \left\langle \log f(\mathbf{A}; \theta) \right\rangle$$

h

- Learned f(A) through normalizing flow
- Reduced-order model..

 $d_t \boldsymbol{\mathcal{A}} = \boldsymbol{N}(\boldsymbol{\mathcal{A}})$

Learned f(A) through normalizing flow

• Reduced-order model..

$$d_t \boldsymbol{\mathcal{A}} = \boldsymbol{N}(\boldsymbol{\mathcal{A}})$$

..Liouville equation for single-time PDF

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial \mathcal{A}_{ij}}(N_{ij}f) = 0$$

f(**A**) = PDF of turbulent velocity gradients

- Learned f(A) through normalizing flow
- Reduced-order model..

$$d_t \boldsymbol{\mathcal{A}} = \boldsymbol{N}(\boldsymbol{\mathcal{A}})$$

..Liouville equation for single-time PDF

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial \mathcal{A}_{ij}} (N_{ij}f) \neq 0$$
 Learned

f(**A**) = PDF of turbulent velocity gradients

- Learned f(A) through normalizing flow
- Reduced-order model..

$$d_t \boldsymbol{\mathcal{A}} = \boldsymbol{N}(\boldsymbol{\mathcal{A}})$$

..Liouville equation for single-time PDF

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial \mathcal{A}_{ij}} (N_{ij}f) = 0$$
 Learned

• Drift such that learned *f*(*A*) is a steady-state solution

$$N_{ij}(\boldsymbol{\mathcal{A}}; \psi) = \frac{\partial T_{ijpq}}{\partial \mathcal{A}_{pq}} + T_{ijpq} \frac{\partial \log f}{\partial \mathcal{A}_{pq}}$$
$$T_{ijpq} = -T_{pqij}$$

f(**A**) = PDF of turbulent velocity gradients

- Learned f(A) through normalizing flow
- Reduced-order model..

$$\mathrm{d}_t \boldsymbol{\mathcal{A}} = \boldsymbol{N}(\boldsymbol{\mathcal{A}})$$

..Liouville equation for single-time PDF

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial \mathcal{A}_{ij}} (N_{ij}f) \neq 0$$
 Learned

• Drift such that learned *f*(*A*) is a steady-state solution

$$N_{ij}(\mathcal{A};\psi) = \frac{\partial T_{ijpq}}{\partial \mathcal{A}_{pq}} + \underbrace{T_{ijpq}}_{\partial \mathcal{A}_{pq}} \frac{\partial \log f}{\partial \mathcal{A}_{pq}} \qquad \begin{array}{c} f(\mathcal{A}) \text{ imposed,} \\ T(\mathcal{A}) \text{ to be learned} \\ T(\mathcal{A};\psi) \text{: "Gauge" terms} \\ anti-symmetric \end{array}$$

79

 $f(\mathbf{A}) = PDF$ of turbulent velocity gradients

- Learn single-time PDF
- Construct system featuring that steady-state PDF

Q

- Learn single-time PDF
- Construct system featuring that steady-state PDF
- Optimize trajectories: time correlations, conditional dynamics, (GAN, diffusive models, etc.)

[Li, Biferale, Bonaccorso, Scarpolini and Buzzicotti, arXiv physics.flu-dyn, 2023]

- Lagrangian realizations of the gradient from DNS A(t)
- Numerically integrate model realizations

 $d_t \mathcal{A} = N(\mathcal{A})$ Neural Net.(**A**;ψ)

- Lagrangian realizations of the gradient from DNS A(t)
- Numerically integrate model realizations

- Lagrangian realizations of the gradient from DNS A(t)
- Numerically integrate model realizations

Optimize e.g., time correlations and conditional derivatives

 $\min_{\psi} \left[\left\| \left\langle A_{ij}(t_0) A_{pq}(t) \right\rangle_0 - \left\langle \mathcal{A}_{ij}(t_0; \psi) \mathcal{A}_{pq}(t; \psi) \right\rangle_0 \right\|^2 + \left\langle \left| \boldsymbol{B}_i : \left(\mathrm{d}_t \boldsymbol{A} - \boldsymbol{N}(\boldsymbol{A}) \right) \right|^2 \right\rangle \right]$

Single-time statistics: principal invariants PDF

Single-time statistics: vorticity principal components PDF

Normalized vorticity components in the strain-rate eigenframe

$$egin{aligned} oldsymbol{S} &= rac{1}{2} \left(oldsymbol{A} + oldsymbol{A}^{ op}
ight) \ oldsymbol{\omega} &= oldsymbol{
aligned} imes oldsymbol{u} \ \hat{\omega}_i &= oldsymbol{\omega} oldsymbol{\cdot} oldsymbol{v}_i
ight) \|oldsymbol{\omega}\| \ eta_i &= oldsymbol{\omega} oldsymbol{\cdot} oldsymbol{v}_i
ight) \|oldsymbol{\omega}\| \end{aligned}$$

Strain-rate eigenvectors associated with ordered eigenvalues

Now two-time statistics

Time correlations and sample realizations

Normalized correlations

Vorticity:

$$C_{\boldsymbol{\omega}}(t) = \frac{\langle \omega_i(0)\omega_i(t)\rangle}{\langle \omega_i(0)\omega_i(0)\rangle}$$

Strain rate:

$$C_{\mathbf{S}}(t) = \frac{\langle S_{ij}(0)S_{ij}(t)\rangle}{\langle S_{ij}(0)S_{ij}(0)\rangle}$$

Time correlations and sample realizations

Chaotic dynamical system: [S. H. Strogatz, Nonlinear Dynamics and Chaos, (2000)]

• Deterministic, aperiodic

- Chaotic dynamical system: [S. H. Strogatz, Nonlinear Dynamics and Chaos, (2000)]
- Deterministic, aperiodic

Positive Lyapunov exponent

- Chaotic dynamical system: [S. H. Strogatz, Nonlinear Dynamics and Chaos, (2000)]
- Deterministic, aperiodic
- Positive Lyapunov exponent
- Converge from Gaussian to ~turbulent ensemble

- Chaotic dynamical system: [S. H. Strogatz, Nonlinear Dynamics and Chaos, (2000)]
- Deterministic, aperiodic
- Positive Lyapunov exponent
- Converge from Gaussian to ~turbulent ensemble

Something recurrent: The kinematics of the velocity gradients

Homogeneity and incompressibility

 $\langle \phi \rangle = \nabla \cdot \langle F \rangle = 0$

- Quantity = divergence of some field
- Homogeneity/no-flux implies zero average

Carbone and Wilczek, "Only two Betchov homogeneity constraints exist for isotropic turbulence", *JFM* **948**, (2022)

Something recurrent: The kinematics of the velocity gradients

Homogeneity and incompressibility

$$\langle \phi \rangle = \nabla \cdot \langle F \rangle = 0$$

- Quantity = divergence of some field
- Homogeneity/no-flux implies zero average

$$\operatorname{Tr}(\boldsymbol{A}^{2}) = \nabla_{j}u_{i}\nabla_{i}u_{j} = \nabla_{i}\left(u_{j}\nabla_{j}u_{i}\right)$$

$$\operatorname{Tr}(\boldsymbol{A}^{3}) = \nabla_{j}u_{i}\nabla_{k}u_{j}\nabla_{i}u_{k} = \nabla_{i}\left(u_{k}\nabla_{j}u_{i}\nabla_{k}u_{j} - \frac{1}{2}u_{i}\nabla_{k}u_{j}\nabla_{j}u_{k}\right)$$

- Easy to show the Betchov relations..
- ..but how to find all possible homogeneity relations?

Carbone and Wilczek, "Only two Betchov homogeneity constraints exist for isotropic turbulence", *JFM* **948**, (2022)

Kinematics of the velocity gradients

• Write the most general **F**

$$\langle \phi \rangle = \nabla \cdot \langle F \rangle = 0$$

Impose divergence function of only A

$$\phi(\mathbf{A}) = \frac{\partial F_i}{\partial u_p} (\mathbf{u}, \mathbf{A}) A_{pi}$$
$$\frac{\partial F_i}{\partial A_{pq}} (\mathbf{u}, \mathbf{A}) \nabla_i A_{pq} = 0$$

- Homogeneity constraints: solutions of linear PDE

Carbone and Wilczek, "Only two Betchov homogeneity constraints exist for isotropic turbulence", *JFM* **948**, (2022)

Kinematics of the velocity gradients

Some generalization

 $\psi\left(\boldsymbol{A},\boldsymbol{\nabla}\boldsymbol{q}\right) = \boldsymbol{\nabla}\cdot\left[\bar{c}_{1}\boldsymbol{q} + \bar{c}_{2}\boldsymbol{A}\boldsymbol{q} + \bar{c}_{2}\left(\boldsymbol{A}^{2} - \frac{1}{2}\mathrm{Tr}\left(\boldsymbol{A}^{2}\right)\boldsymbol{I}\right)\boldsymbol{q}\right]$

• Several relations on pressure, Laplacian, vorticity, etc.

 $\begin{array}{l} \left\langle A_{ij} \nabla^2 A_{ji} \right\rangle = 0 \\ \left\langle A_{ij}^2 \nabla^2 A_{ji} \right\rangle = 0 \\ \left\langle A_{ij}^2 \nabla_i \nabla_j P \right\rangle = -\frac{\rho}{2} \left\langle (A_{ij} A_{ji})^2 \right\rangle \\ \left\langle A_{ij} \nabla_i \omega_j \right\rangle = 0 \\ \left\langle A_{ij}^2 \nabla_i \omega_j \right\rangle = 0 \end{array}$ Eyink, JF Capocci,

Eyink, JFM **549**, (2006) Capocci, Johnson, Oughton, Biferale, Linkmann, JFM **963**, (2023)

 $\langle \phi \rangle = \nabla \cdot \langle F \rangle = 0$

Velocity gradients at low Reynolds numbers

Strain rate at high Reynolds numbers

Velocity gradients at high Reynolds numbers

<u>Some applications: Quantifying energy cascade</u>

Acknowledgments: Prof. Andy Bragg

- Coarse-grained gradient at varying scale *r*
- Tilde: filtering at scale $\ell(r)$
- Incompressibility issue! $\partial_r \cdot \Delta \widetilde{u} \neq 0$

$$\Delta \widetilde{oldsymbol{u}} \simeq \widetilde{oldsymbol{A}} m{\cdot} oldsymbol{r}$$

Carbone and Bragg, "Is vortex stretching the main cause of the turbulent energy cascade?", JFM 883, (2020)

- Coarse-grained gradient at varying scale r
- Tilde: filtering at scale $\ell(r)$
- Incompressibility issue! $\partial_r \cdot \Delta \widetilde{u} \neq 0$
- Recover standard increment for a scaleindependent filtering

$$\begin{split} \Delta^* \widetilde{\boldsymbol{u}} &= \boldsymbol{\partial_r} \times \widetilde{\boldsymbol{V}^*}(\boldsymbol{x}, \ell(r), t) \\ \Delta^* \widetilde{\boldsymbol{u}}|_{\ell} &= \Delta \widetilde{\boldsymbol{u}} \end{split}$$

 $\Delta \widetilde{\boldsymbol{u}} \simeq \widetilde{\boldsymbol{A}} \boldsymbol{\cdot} \boldsymbol{r}$

Carbone and Bragg, "Is vortex stretching the main cause of the turbulent energy cascade?", JFM 883, (2020)

- Coarse-grained gradient at varying scale *r*
- Tilde: filtering at scale $\ell(r)$
- Incompressibility issue! $\partial_r \cdot \Delta \widetilde{u} \neq 0$
- Recover standard increment for a scaleindependent filtering

$$\begin{split} \Delta^* \widetilde{\boldsymbol{u}} &= \boldsymbol{\partial_r} \times \widetilde{\boldsymbol{V}^*}(\boldsymbol{x}, \ell(r), t) \\ \Delta^* \widetilde{\boldsymbol{u}}|_{\ell} &= \Delta \widetilde{\boldsymbol{u}} \end{split}$$

• Correction on the transverse increment only

$$\begin{split} \Delta^* \widetilde{\boldsymbol{u}} &= \widetilde{\boldsymbol{A}} \cdot \boldsymbol{r} + \frac{\boldsymbol{r}}{r} \times \left[\frac{1}{2} (\boldsymbol{r} \boldsymbol{r} : \boldsymbol{\nabla} \boldsymbol{\nabla}) \partial_r \widetilde{\boldsymbol{V}}(\boldsymbol{x}, \ell(r), t) + \partial_r \widetilde{\boldsymbol{C}}(\boldsymbol{x}, r, t) \right] + \boldsymbol{h} \\ \left\langle \Delta^* \widetilde{\boldsymbol{u}}_{\perp}^2 \Delta^* \widetilde{\boldsymbol{u}}_{\parallel} \right\rangle &= \frac{1}{6} \partial_r \left\langle r \Delta^* \widetilde{\boldsymbol{u}}_{\parallel}^3 \right\rangle & \quad \text{Carbone and Bragg, "Is vortex stretching the main cause} \\ \text{of the turbulent energy cascade?", JFM 883, (2020)} \end{split}$$

$$\Delta \widetilde{\boldsymbol{u}} \simeq \widetilde{\boldsymbol{A}} \boldsymbol{\cdot} \boldsymbol{r}$$

- Coarse-grained gradient at varying scale *r*
- Solve incompressibility issue

$$\Delta \widetilde{\boldsymbol{u}} \simeq \widetilde{\boldsymbol{A}} \boldsymbol{\cdot} \boldsymbol{r}$$

$$\Delta^* \widetilde{\boldsymbol{u}} = \boldsymbol{\partial}_{\boldsymbol{r}} \times \left(2 \widetilde{\boldsymbol{V}}(\boldsymbol{x} + \boldsymbol{r}/2, t) + 2 \widetilde{\boldsymbol{V}}(\boldsymbol{x} - \boldsymbol{r}/2, t) + \widetilde{\boldsymbol{B}}(\boldsymbol{x}, t) \right)$$

• Energy transfer across the scales

Carbone and Bragg, "Is vortex stretching the main cause of the turbulent energy cascade?", *JFM* **883**, (2020)

Velocity gradients at low Reynolds numbers

Strain rate at high Reynolds numbers

Velocity gradients at high Reynolds numbers

Some applications: Iron particle combustion

Acknowledgments: Ing. Gabriel Thäter, Prof. Bettina Frohnapfel, Prof. Oliver T. Stein

Iron particle combustion in turbulence

• Physical model: variable-density Navier-Stokes

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = C^{\rho}$$
$$\frac{\partial (\rho u_i)}{\partial t} + \frac{\partial (\rho u_i u_j)}{\partial x_j} = -\frac{\partial \pi}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} + F_i^u + C_i^u$$
$$\frac{\partial H}{\partial t} + \frac{\partial (u_i H)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\lambda \frac{\partial T}{\partial x_i}\right) + \frac{\mathrm{d}p_0}{\mathrm{d}t} + F^H + C^H$$

• Low-Mach approximation $P(\boldsymbol{x},t) = p_0(t) + \pi(\boldsymbol{x},t)$ $\frac{\partial(\rho u_i)}{\partial x_i} = \mathcal{F}[\rho, \boldsymbol{u}, T, m_p, T_p].$

Iron particle combustion in turbulence

• Physical model: variable-density Navier-Stokes

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = C^{\rho}$$

$$\frac{\partial (\rho u_i)}{\partial t} + \frac{\partial (\rho u_i u_j)}{\partial x_j} = -\frac{\partial \pi}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} + F_i^u + C_i^u$$

$$\frac{\partial H}{\partial t} + \frac{\partial (u_i H)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\lambda \frac{\partial T}{\partial x_i}\right) + \frac{\mathrm{d}p_0}{\mathrm{d}t} + F^H + C^H$$

• Low-Mach approximation $P(\boldsymbol{x},t) = p_0(t) + \pi(\boldsymbol{x},t)$ $\frac{\partial(\rho u_i)}{\partial x_i} = \mathcal{F}[\rho, \boldsymbol{u}, T, m_p, T_p].$

• Coupling via Non-Uniform FFT fluid-
isotronic
$$C^u(\boldsymbol{x},t) = \sum_{p=1}^{N_P} M_{3,p}(t) \left(\boldsymbol{u}(\boldsymbol{x}_p,t) - \boldsymbol{v}_p \right) \delta \left(\boldsymbol{x} - \boldsymbol{x}_p \right)$$

Carbone, Iovieno, Bragg, "Multiscale fluid--particle thermal interaction in isotropic turbulence", *JFM* **881**, (2019)

Iron particle combustion in turbulence

• Physical model: Reacting iron particles

Gather, react, eject

t = 10.0 ms

 $t=11.0~{\rm ms}$

t = 13.0 ms

Ignition within clusters

Weakening clustering

Analytic insight, onset of skewness, alignments and intermittency

Analytic insight, onset of skewness, alignments and intermittency

$\frac{1}{1} \frac{1}{1} \frac{1$

Strain rate at high Reynolds numbers

Analytically parameterized the strain-rate PDF, sampled PDF via tailor-made model

Analytic insight, onset of skewness, alignments and intermittency

Strain rate at high Reynolds numbers

Analytically parameterized the strain-rate PDF, sampled PDF via tailor-made model

-8 -8 -8

Velocity gradients at high Reynolds numbers

Normalizing flow to learn the velocity gradient PDF, deterministic, chaotic model for the small scales

Analytic insight, onset of skewness, alignments and intermittency

Strain rate at high Reynolds numbers

Analytically parameterized the strain-rate PDF, sampled PDF via tailor-made model

-8 | -8

Velocity gradients at high Reynolds numbers

Normalizing flow to learn the velocity gradient PDF, deterministic, chaotic model for the small scales

Some applications

Quantify average energy cascade, Turbulence interacting with iron particle combustion